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HYDRODYNAMICS OF RISING BUBBLES AND DROPS 

(REVIEW) 

P. K. Volkov UDC 532.529.6 

INTRODUCTION 

There is hardly a technology which does not use media with different kinds of inclusions: bubbles, drops, 

particles. Bubbles and drops rising in liquids assume different shapes. Visualization of flows reveals their different 

types: laminar, separationless; those involving the formation of a toroidal vortex at the rear; a vibrating bubble or 

drop with a kind of K~rm~n street behind it; a bubble or drop rising helically; a bubble in the form of a spherical 

cup with a large vortex; a drop concave at the front, etc. The problem of describing the laws that govern the rise 

of bubbles and drops has been covered extensively in the literature, both experimental and theoretical. Above all, 

the long and continuous interest in these problems is due to the fact that they underlie the description of the 

interaction of two-phase media. Despite the long history of intense study for the past forty years, there is as yet 

no satisfactory description of the motion of different media and hebavior of mixtures as a whole (except for 

homogeneous models). One of the reasons for this in the theory of multiphase media is the absence of a complete 

picture of the interaction of rising (moving in a flow) individual formations with the carrier medium and with each 

other. These problems are very complicated and difficult to investigate theoretically. Apart from the obvious 

difficulty posed by the necessity to determine both the flow structure and the shape of bubbles and drops, they 

involve one other unknown quantity, i.e., the velocity of rise (the velocity of the relative motion of a separate particle 

in a liquid flow). This imposes additional constraints on obtaining information that would adequately take account 

of the process of rising. For example, a small and light solid sphere rises in a liquid with a single velocity, whereas 

the problem of flow around this sphere can be solved for any incident stream velocities. The situation is made much 

more complex if the shape of the surface changes with the flow hydrodynamics. Accounting for the inertia effects 

of moving particles is important in problems with external influences on the liquid (rise in a rotating liquid, 

electrically conducting liquid, etc.). On the theoretical level, up to now studies have generally been confined to the 

problems of flow past objects. The question concerning the compliance of these solutions with the problems of rise 

needs further study. 

The available theoretical publications are concerned with various limiting cases of large (small) values of 

the problem parameters when a bubble (drop) has the shape of a sphere or ellipsoid. The present state of the 

subject is covered rather adequately in [1, 2 ]. However, asymptotic methods are unsuitable for the intermediate 

values of the parameters. Here, only a direct numerical calculation of the motion equations enables one to obtain 

information about the rising particles. This work aims at presenting the hydrodynamics of rising bubbles and drops 

and correlating the available data. Necessary comparisons are made between theoretical, numerical, and test data. 

Charts of flow modes are constructed; it is shown that the Laplace capillary constant is an important characteristic 

for the process of rise of bubbles and drops. The work is a natural complement to the available detailed reviews 

[3, 4 ] devoted to bubbles and drops. As a rule, the mathematical simulation is carried out within the framework 

of ideal and viscous liquids. The theoretical statements are not new. Investigations of the existence and uniqueness 

of solutions for a number of free-surface problems were conducted in [5-7 ]. It should be noted that the successes 

in the construction of numerical algorithms for solving Euler and Navier-Stokes equations with a free boundary are 
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due largely to the theoretical investigations conducted, which constantly remind us that everything will come out 

fine. 

Chapter .1. MODEL OF AN IDEAL LIQUID 

1.1. Statement of the problem 

The first exact solution to the problem of the dynamics of a spherical bubble is given in [8 ]. With allowance 

for spherical symmetry in the absence of gravity, the problem is reduced to the determination of the bubble radius 

as a function of the difference in pressure on the inside and at infinity. The change in the radius with time is given 

by a quadrature. 

The complete statement of the problem concerning the rise of a bubble in a heavy infinite liquid was first 

made by Ovsyannikov [5 ]. Assuming the gas in the bubble to be inviscid and non-heat-conducting, its state can 

be described by one constant, i.e., by the thermodynamic pressure pg. The liquid motion is described by the Euler 

equations which, for the potential ~o in the axysymmetric case in a spherical coordinate system with the origin at 

the "bubble center," have the form 

A~o = O, (1.1) 

0__~ + 1 i 2 p 
ot + -g cosO=c(0. 

At infinity the liquid moves with a given velocity u 

~o-->urcosO when r--> oo. 

The symmetry conditions are 

(1.2) 

(1.3) 

0~o/00 = 0 when 0 = 0,  3r. (1.4) 

Moreover, on the free surface the kinematic and dynamic conditions should be fulfilled 

_ o__R + _ 1L - o_y_R = o ,  ( 1 . 5 )  
Ot Or R 2 O0 O0 

pg = p + crK. (1.6) 

The initial conditions should be prescribed only on the surface 12 

t = 0 ,  R ( 0 ,  0) = R 0 ,  ~o(0, 0) =~o 0. (1.7) 

Here t is the time; u is the liquid velocity at infinity; p is the liquid density; g is the acceleration of gravity; 

a is the coefficient of surface tension; r = R(O, t) is the equation of the free surface/'; p is the pressure; K is the 

curvature of the surface F; c(t) depends on the problem to be solved. For small rising times we may assume that 

the liquid at infinity is at rest: O~o/Ot -> 0 when r --> ~. Then p ~ / p  - gr cos 0 = c(O, and since poo is independent 

of t (the liquid is at rest), what remains is c(t) = Po/P = const, where P0 is the additional pressure at infinity, which 

will be the parameter of the problem. 

1.2. Unsteady-state rise of a bubble 

The presence of gravity in the case of potential liquid flow makes the problem nonstalionary, since it is 
impossible to compensate the effect of gravity force because of d'Alembert's paradox. In Eq. (1.6) the capillary 
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Fig. 1. The bubble shape obtained by different techniques: 1) calculation by 

the finite-difference method [10] which coincides with the approximate 

solution of [11 ] and numerical solution of [91; 2) solution with account for 

capillary forces (We - 0.1) by the method of transfinite interpolation [12 ]. 

forces influence only the shape of the surface, whereas condition (1.6) itself for the free surface function is a 

strongly nonlinear ordinary differential equation of the second order whose solution involves considerable 

difficulties. Three versions of its realization are possible. 

In the case of motion with high velocities or when the surface tension a is small as compared with K (large 

Weber numbers We = pu22a/a), we may neglect capillary forces in the first approximation. The model obtained 

was solved by various methods: in Lagrange coordinates with the aid of series expansion in powers of time t [5 ]; 

by solving numerically an integro-differential equation for the free surface function [9 ]; by direct finite-difference 

solution of equations (1.1)-(1.7) [10 ]. Qualitatively (as regards the shape of the bubble), all the solutions agree 

well (Fig. 1). At the rear of a rising, originally spherical, bubble an inward depression appears with time which 

then grows rapidly. The boundary of the free surface remains smooth. 

It should be noted that in the calculations of [9 ] the volume of the bubble remained invariant. With time 

the bubble boundary approaches the coordinate origin and singularity appears in the coefficients of the equations. 

Moreover, a situation is possible where the free surface cannot be described by a single-valued function of type r 

= R (0, t). Parametric representation for the function of the boundary makes it possible to avoid these difficulties. 

The algorithm of the solution of free-surface problems [13 ] is very much in keeping with the spirit of the method 

suggested in [9 ]. 

Explicit account for capillary forces in Eq. (1.6) in the numerical solution leads to the smoothing of the 

depression on the back side and does virtuallynot alter the remaining portion of the boundary (if the curvature 

radius is large, the value of aK (or K/We) will be small; over portions with a larger curvature the influence of aK 

is higher; in this case the capillary forces play a dissipative role). 

In order to elucidate the actual contribution of capillary forces to deformation processes on a free surface, 

it is necessary that the curvature-involving term be taken for numerical solution from the "upper time layer," but 

this greatly complicates the solution algorithm [12 ]. At large Weber numbers (even at We - 10) solutions coincide 

with calculations in which capillary forces are not taken into account. However, at smaller We numbers (~0.1) 

there are substantial differences. With the appearance of a depression on the back side in the region of the boundary 

deflection a wave appears which increases with time (curve 2 in Fig. 1) and then "overturns." The bubble separates 
into two parts: the upper part rises, while the lower forms an inward rivulet which moves with an increasing velocity. 

The explanation for such different occurrences of the processes of free surface deformation should be sought in the 
dispersion properties of the mathematical models used. 
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Fig. 2. Degree of bubble deformation as a function of the Weber number 

according to different methods [ 19 ]: 1) two-point theory; 2) linearized two- 

point theory; 3) virial theory (close to calculations made in [17 ] and [18 ]); 

4) linearized virial theory. 

1.3. Steady rising of a bubble 

We can obtain stationary solutions by excluding the gravity-involving term from Eq. (1.2). Physically, this 

model can be explained as an attempt to take into account the viscous resistance of a bubble balanced out by the 

Archimedian force. In fact, by integrating Eq. (1.2) (with account for the viscous term [14 ]) over the bubble surface, 

we find that the viscosity- and gravity-involving terms disappear. Thus, excluding these quantities from Eq. (1.2), 

we obtain this approximation. In this case, it is advisable to take into account capillary forces in Eq. (1.6), since 

after nondimensionalization the problem will have only one independent parameter which usually is taken to be 

the Weber number. Here the value We = 0 corresponds to a sphere if Eq. (1.6) is fulfilled. It is now apparent that 

condition (1.6) should be used for determining the shape of the bubble. This greatly complicates numerical solution, 

since it is necessary to solve the nonlinear curvature operator. When We > 0, the shape of the bubble is close to 

an ellipsoid [15, 16 ]. Therefore, in approximate methods of the solution of this problem it was customary to assume 

that the shape of the bubble was an ellipsoid (see review [3 ]). 

In :[17 ] solutions for the bubble boundary were obtained from an integro-differential equation, and in [18 ] 

by a direct finite-difference calculation of the Euler equation. These data and calculations by approximate 

techniques, for example that of [19 ], agree well up to We < 2.5 and differ greatly at higher values of We. As We 

increases, the bubble flattens (see Fig. 2, where Z is the ratio of the horizontal-to-vertical dimension of the bubble). 

The character of the curve Z (We) is such that when We approaches a certain value (We0 ~ 3.3) the function Z (We) 
has a vertical tangent. In this case, there is ambiguity of z(We) in the vicinity of the point We0. Such a behavior 

can be interpreted as the bifurcation of the solution with respect of the parameter We with the appearance of an 

unstable solution, since small deviations AWe for the points of the upper branch lead to appreciable changes in the 

geometric characteristic of the bubble Z" The value of We0 at which the function Z (We) has a vertical tangent can 

be adopted to be the critical value which characterizes the stability of a potential flow. 

1.4. Dispersion properties of a free surface 

The study of the laws governing the propagation of waves over a free surface in their full statement is a 

very complicated problem even in the simplest case of a plane surface. Some information was obtained for the case 

where surface deformation occurs with deviation along the normal from equilibrium for waves whose amplitude is 

much smaller than their length. For the case of the natural oscillations of a spherical incompressible liquid drop 
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under the influence of capillary forces the Rayleigh solution is used (see [20 ]). The least possible frequency of 

oscillations is obtained: 

2 3 
corn = 8a/pa , 

Here a is the sphere radius. 

Investigation of the dispersion properties of the surface of a bubble or a drop is complicated by the fact 

that during their motion along the boundary the angle between the direction of the gravity force and the tangent 

to the surface varies. Nevertheless, the results available for gravity and capillary waves on a plane surface can be 

applied to waves propagating over the bubble (drop) surface if their length is much smaller than their size. Thus, 

this offers explanation for the differences in the deformation of a bubble indicated in Sec. 1.2. In fact, if the 

capillarity effect is neglected, then the dispersion relation for plane waves propagating along the surface has the 

form 0) 2 = gk (purely gravitational waves [21 ]). Here, co is the cyclic frequency and k is the wave vector of the wave. 

The wavelength is 2 = 2n/k, and the speed of wave propagation is U = Oco/Ok [20]. Substituting the value for co, 

we find that the speed of propagation of gravity waves is U = (g2/2T)1/2/2. It increases with growth in wavelength. 

In this case small perturbations originating on the free surface are "stretched" by longer waves (or by the bubble 

surface itself, which is a wave per se). 

The capillary forces in the dispersion relation are taken into account by the term co2 = gk + (rk3/p. For a 

short wave we can neglect the influence of the gravity field. Then, co2 = crk3/p, and the speed of wave propagation 

U = (3ak/2p)1/2= (3na/Ap)1/2 increases with decrease in wavelength. In this case small perturbations have a high 

speed of propagation, overcome the longer waves, and strengthen them. 

The capillary properties of the free surface of a bubble can be demonstrated if we write the equation for 

the surface in parametric form [12]. In this case for the functions R(~, t), G(~, t), and ~(~, t) (r = R(~, t), 0 = 

G(~, t) is the parametric representation of the relation r = R(O, t), ~ E [0, 1 ]) we obtain a system of nonlinear 

equations not readily amenable to solution: 

G e R  t - R  t G  t = A ( ~ ,  t), R e R ~ e + R  2G e G e e + R R  t 4 = B ( ~ ,  t), 

1 
~t + 7  [(Rk - R) G t -  Qr~ - G) R t ] ~  = C (~, t) - 

- ,~R (Ret a e - R~ ace) (R~ + R~C0 - ~  . (1.8) 

Here the functions A(~, t), B(~, t), C(~, t) designate the terms which do not contain time derivatives and second 

derivatives with respect to ~, J is the Jacobian, and r = R k is the "actual infinity." 

Direct elimination first of, say, Gt from the first and third equations of system (1.8) with account for the 

second equation and then of R t leads to the following evolutional system of equations: 

G e ~ e R , =  aR e 
n (R~ - n ~ @  ~ net + O (~, t), 

aG~ R 2 
- Rt ~t o,  = (R~ + R 2 ~ )  ~ ate + e (~, 0. (t .9) 

One equation of system (1.9) is parabolic and the other is antiparabolic, since the set of the factors on 

which the signs of the terms with R t, Ret, Gt, Get depend is the same, whereas the left-hand sides in Eqs. (t.9) 
have opposite signs. Thus, the Cauchy problem for system (1.9) is always incorrect. 

However, if in Eqs. (1.8) the time derivatives Rt, G t are excluded so as to drop the terms with R t and Gte 

and with Gt and Rtt, we obtain the following system of equations: 
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aR 
-T~ Rt = (R~ + R24)I/2 G~ + P (~, t), 

_ ~ G t =  _ a R (g~ + R2G~)l/2 R~ + Q (~, t). (1.10) 

This system of equations with initial conditions seems to be correct, since it can be reduced to two equations 

of the type 

(1.11) 

whose coefficients are always positive. And this is none other than the equation for the oscillation of a rod which 

is correct with the initial problem [22 ]: R = R0, OR/Ot = R1 for t = 0. 
The dispersion relation for (1.11) (this can be obtained from the full original statement without any 

assumptions about the displacement of liquid; in particular bending displacements are permissible) has the form 

+ :  + : - -  0 (1.12) 

In this case the speed of the propagation of perturbations U-  1/We2 is smaller at large Weber numbers 

and grows with a decrease in wavelength. (There is a similar situation in the problems of the propagation of 

vibrations in rods and plates. Account for flexural deformations leads to the change in the dispersion relation which 

has the form of Eq. (1.12)). The appearance of inflection in the free surface (Fig. 1) makes it possible to distinguish 

waves of several scales on it: long waves corresponding to the upper portion of the bubble, short waves corresponding 

to the "depression," and even shorter waves corresponding to the region of inflection. Small pertubations 

propagating over the free surface will first of all influence the deformation in the region of inflection. One should 

also take into account the effect from ~ (~, t) # const: U --, co when ~ --, 0. 

In experiments in liquids with small M values (M = gp3v4/cr3 [23 ]) the surface of rising bubbles is virtually 

"scarred with wrinkles." Thus, to get an adequate idea about the character of the deformation of the surface, it is 

necessary to employ a mathematical model in which capillary forces are taken into account (M = 0 corresponds to 

an ideal liquid). 

Chapter 2. MODEL OF A VISCOUS LIQUID 

If a bubble is located in a viscous liquid, the flow is described by Navier-Stokes equations. Despite the 

viscous resistance of the bubble, the presence of the gravity force makes the process of bubble rise unsteady due 

to a decrease in the hydrostatic pressure with rise of the bubble and increase in its volume. However, this change 

in the volume can be small over separate paths of the rise if the bubble is in a state of equilibrium and small 

compared to the path considered. Usually, in practice such areas are selected far under the free surface, and the 

degree of the bubble expansion is specially checked. The observation area should be much smaller than the depth 

of immersion so that the change in the hydrostatic pressure over it is small compared to the pressure within the 

bubble (estimates made in [3, 24 ] show that this requirement is not burdensome). Such a quasistationary rise can 
be simulated by the problem of steady flow around a bubble. This problem was solved exactly in [25, 26 ]. In this 

case we have a bubble in equilibrium, and the Archimedian force is balanced by frictional viscosity. This means 

that over a certain portion of the rise path its volume will not be grossly enlarged. Of course, here the question 

remains untouched concerning the theoretical accuracy of the approximation the answer to which can be given only 

by the solution of the unsteady problem of a rising bubble (not necessarily in the three-dimensional case). Indirect 

confirmation of such a simulation is given by a comparison of experimental data on the speed of the rise of bubbles 

with calculations for steady flow. 
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2.1. Statement of the problem 

The Navier-Stokes equations describing the motion of a gas cavity in a viscous incompressible liquid have 

the form 

Ov (2.1) 
0-7 + vVv + V ( p / p  + gx3) = v Vv, 

div v = 0 .  (2.2) 

Here v(t, ~) is the liquid velocity vector at the point with the coordinate ~ at the time t, p(t ,  -~) is the liquid pressure, 

and v is the coefficient of kinematic viscosity. 

Let us formulate the boundary conditions. Suppose Z is the known external boundary of the flow region. 

Then, the velocity vector ~ (t, 2) is prescribed on it 

vlx  = (2.3) 

On the free boundary F (F(t ,  ~) -- 0) kinematic and dynamic conditions should be fulfilled 

O F + v V F  0 ,  (2.4) 
Ot 

r Tn = 0 ,  (2.5) 

nTn = a K  - pg.  (2.6) 

Here 1:, n are the unit vectors of the external normal and tangent to F, and T is the stress tensor (Tii = -P6iy  + 

pv (Ov i /  Ox j + Ovj/ Oxi)). 

Equations (2.1) express the equilibrium of the forces acting on a liquid particle; Eq. (2.2) is the mass 

conservation equation; Eq. (2.3), in which ~ is a given function, is usually called the "nonslip condition"; Eq. (2.4) 

imposing conditions on F means that the velocity of liquid particle motion along the normal to F coincides with that 

of the surface displacement in the direction of the normal to 1"; Eq. (2.5) means the absence of friction on the free 

surface (equality to zero of shear stresses); Eq. (2.6) shows that the difference of normal stresses is equal to the 

capillary pressure. 

Generally speaking, conditions (2.3)-(2.6) do not yet determine the correctly stated problem for Eqs. (2.1) 

and (2.2) [6 ]. Additional conditions, i.e., the conditions at infinity for an infinite region, periodicity conditions, 

and others, are prescribed depending on the specific problem to be solved. 

Let us consider the problem of a "steady" rise of a gas cavity in a viscous liquid at rest at infinity. In this 

case, for F(t ,  -~) = x 3 - f  (t, Xl,  x2) = 0 we have Of/Ot -> const = u which is called the bubble rise velocity. In the 

case of steady motion Eqs. (2.1) are simplified and become stationary in the coordinate system "connected with 

the bubble," i.e., that moving along the direction of the bubble rise with the velocity u (thus we have passed to the 

problem of flow around a bubble). We will consider axisymmetric solutions. In this case it is convenient to introduce 

a spherical coordinate system (r, 0, ~o) with the origin 0 at the center of mass of the bubble and to pass from the 

functions of the velocity vector v and pressure p to the stream function ~0 and vorticity co (v r = 1 / r  2 sin 0 .0~/00 ,  

vo = - 1 / r  sin O.O~/Or) .  

2.2. Dimensional analysis 

The  problem of a s t eady  rise of a bubble (drop) involves a quanti ty which is de termined by the 
hydrodynamics of the process, i.e., the rise velocity u. Condition (2.6) incorporates the difference between the 
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values of pressure constants: within, pg, and outside, poo, the bubble. We will show that the volume of the bubble 

(drop) is determined by this difference and by the a value if the media are prescribed. In fact, in the case of 

equilibrium (e.g., g--  0 o r p l  --P2 for a drop) Eq. (2.6) yields 

pg - w (2.7)  ----~----  = K ,  

i.e., the curvature o f / "  is constant, and, consequently, the surface is a sphere of radius a. In this case K = 2/a, 
and Eq. (2.7) yields 

2o  (2.8) 
a - -  - -  

Pg -- Poo " 

Thus, problem (2.1)-(2.6) involves five independent inlet dimensional parameters 

p ,  v ,  or, g, p g - p ~ .  (2.9) 

From the dimensionality theory [27 ] it follows that the solution depends on two independent dimensionless groups. 

Nondimensionalization can be performed by different techniques. Usually, in an experiment one can easily a 
assign the bubble volume V (and, consequently, a certain linear dimension a = ~ 3 V ~ n ) .  Moreover, since condition 

(2.3) incorporates u, it is convenient to take 2a and u as the characteristic dimension L and characteristic velocity 

v. (It should be borne in mind that in Eq. (2.9) two particular parameters will become determinable. In the present 

case these are g and pg - p~).  

Assuming that r = Lr', ~/= L2W ', ~9 = v/La~', R = LR, and q =pv2q ', where the primed quantities are 

dimensionless, and substituting them into the motion equations and boundary conditions, we obtain the following 

parameters: Re = vL/v, the Reynolds number,  We = pv2L/a, the Weber number; Fr  = v2/gL, the Froude number; 

and Pd = (pg - p~)L/a,  the dimensionless pressure difference. 

Thus,  we have four dimensionless groups. According to the dimensional analysis only two groups can be 

independent.  Here,  they are taken to be Re and We. The remaining parameters are determinable and should be 

calculated simultaneously with the flow functions from the assumption of stationarity of flow and constancy of 

volume (the input data include u and 2a!). From this it follows, in particular, that with this nondimensionalization 

technique it is impossible to obtain a solution for a previously specified medium. 

Many of experimental  and theoretical works also use the Etvesh number, E = pg(2a)2/a = W e / F r ,  [28-30, 

etc. ] which coincides with the Bond number, Nv = u~(p/g~r) = ~ ,  Nb = ~ [31 ], as well as the Morton 

number, M = gp3v4/a3 = WeS/Re4Fr  [32-34, etc. ]. The  group of physical quantities M was obtained for the first 

time by Kapitsa [35 ] when he investigated thin films flowing down a vertical wall. In the literature this group is 

denoted by Fi = l / M ,  which is the film number. In publications devoted to the problems of the rise of bubbles the 

number M = gtt4/pcr 3 is used. Moore [36 ] mistakenly indicated that this dimensionless group was introduced for 

the first time in [37 ]. It was Schmidt [38 ] who first introduced the number M. The quantity M was called the 

Morton number  beginning about 1970. This parameter  is very convenient, since it involves only dimensional 

physical quantities characterizing the liquid, and does not incorporate the characteristic dimension of a bubble 

(drop) and the rise velocity. More to the point, M = Ar -2, where Ar is the well-known modified Archimedes number 

[39 ] when the "capillary Laplace constant" is taken as the characteristic length, 6a -  x/-~pg. 
The  resistance coefficient Cd is usually defined as the ratio of the resistance force to dynamic pressure, 

and in the given case, since for a "steady" rise of a bubble the resistance force is equal to the Archimedian force, 

we have Cd = pVg/(1/2pv27ca 2) = 4 /3Fr .  (For a gas bubble Cd -- (1 pl/P2)" 4 /3Fr ) .  Thus,  the determination of 

Fr is equivalent to the computation of the resistance coefficient of a bubble. 

The  representat ion of results and the construction of the charts of flow modes in coordinates with the 

parameters Re, We, E, and Nv turn out to be unsatisfactory, since they incorporate the characteristic dimension 

and rise velocity which, as a matter  of fact, are quantities to be determined. The  parameters most convenient for 

the purpose are Ro = a/V-aTp~ and Rv-- a/~(v2/-g) [40, 41 ]. Since (Ra/Rv) 6 = M, the data for each rise medium 
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Fig. 3. Shape of a bubble and flow structure for media with large M values: 

M > 0.004 (Re = 3, We--  8). 

Fig. 4. Flow sepa ra t i on  in media  with " in t e rmed ia t e"  M values:  10 -4 

< M < 0.004 (Re = 12, We = 7.66). 

are represented in the diagram with the coordinates Ra and Rv on a certain straight line whose slope is determined 

by the value of M. Having constructed the isolines of the Froude number Fr (or Cd), it is possible to very easily 

find the rise velocity for a bubble of a given size and focus our attention on the special features of flow for a 

particular liquid. The  parameters are interrelated as follows: 

Ra = (We/4Fr)  1/2 R v = (Re2/8Fr)  1/3 

The quantity 6o = x / ~ p g  entering into the definition of R~, is called the capillary constant of the liquid. It charac- 

terizes the balance of the forces of gravity and surface tension and is an important characteristic for the processes 

of the rise of bubbles and drops. 

If the value L = p v 2 / e  is taken as the characteristic size L and v = a/pv  as the characteristic velocity and 

nondimensionalization is made in its usual manner,  then in Eqs. (2.1)-(2.6) instead of Re, We, Fr, and Pd we will 

have Re - 1, We - l ,  Fr  = l / M ,  and Pd = 2 v ~ / R a .  At infinity the liquid moves at a constant  velocity 

u. = u / v  = u / ( a / p v ) . T h u s ,  the motion equations and boundary conditions contain three dimensionless groups: M, 

Ra, and u. (in Pd allowance is made for the fact that in the case of equilibrium Eq. (2.6) yields 2 a / a  = pg - po~). 

Here Ro prescribes the size of a bubble, M depends only on the physical constants of the liquid, g characterizes 

the rise medium, and u. is the determined quantity. In [42 ] an algorithm was constructed to generate the solution 

of the problem for determining u.. 

2.3. Results of calculations 

In [25, 26 ] an algorithm is suggested for direct finite-difference solution of the Navier-Stokes equations 

with simultaneous determination of the bubble boundary,  and data are given on the laws governing the free surface 

deformation. 

Ryskin and Leal [43 ] cite an example of the use of the adaptive mesh method to calculate flow around a 

bubble. The solutions obtained correlate well. 

From condition (2.6) it follows that, for any Re values, We = 0 corresponds to the spherical bubble (drop). 

At fixed Re and increasing We numbers the bubble flattens vertically. Moreover, at small values of Re a depression 

appears at its rear  in which a stagnant zone is formed at a certain Weo value (Fig. 3). At higher Re values a vortex 

wake (separation) appears on the edges of the plane back side (Fig. 4). When Re _> 40, the vortex exists even with 

the convex shape of the bubble. When We > Weo, there is an extensive stagnant zone behind the bubble. The 

intensity of liquid motion in it is not high. The foregoing is illustrated in Fig. 5 which presents the calculated 
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Fig. 6. Degree of bubble deformation as a function of the Weber number for 

different Reynolds numbers (a) and media with M = 10 -5 and 1.8-10 -7 (b): 

1,2) calculations in [26 ]; 3, 4) calculations by the approximate model of [14 ]; 

5) M = 0 .  

dependence of the Weber and Reynolds numbers, indicating the appearance of the stagnant zone. As the Reynolds 

number increases, Weo decreases. Thus, the last stationary solution at Re = 200 was obtained for We = 3.8. The 

flow near the bubble is separationless and the stream function on the back side is equal to - - 1 0  -4. This means 

(taking into account the solution at smaller Reynolds numbers) that flow separation is about to happen "soon" with 

the formation of a stagnant zone behind the bubble. In this case the value of Z is equal to about 1.8. The dashes 

give the line corresponding to We 0 = 3.3 (see Sec. 1.3, the model of an ideal liquid). 

Figure 6a presents graphs of Z (We) calculated for the front part of a bubble at different Re values. At small 

Reynolds numbers the curves z(We) approach certain constants. This means that deformation occurs at the rear 

as the depression is enlarged. At large Re numbers the functions x(We) tend to approach vertical straight lines, 
and as Re rises they approach the z(We) value of the ideal liquid (Re ~ oo). This means that upon attainment of 

certain We k values the solutions become unstable: small additions AWe lead to large changes in the bubble 

geometry, and calculation becomes impossible. The behavior of the functions z(We) for different Re values, as well 

as the closeness of the values of We0, which were obtained with the help of the model of ideal (= 3.3) and viscous 

(= 3.8) liquids and which point to the presence of instability in the solution, indicate that the value Weo = 3.3 

corresponding to the lower branch of the function z(We) in the ideal liquid model (in the ellipsoidal bubble 

approximation according to [19 ] We = 3.271) seems to be the critical value at which the rise proceeds stably. The 
data of Fig. 6a can be recalculated for the prescribed media by constructing graphs ofx(We) for constant values of 
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M. These graphs have the same form. In Fig. 6b the results of calculations from [26 ] for media with M -- 105 and 

1.8.10 -7 are compared with the data of [14 ] in which the viscosity-containing terms are taken into account in the 

dynamic condition within the framework of the ideal liquid model. As M falls, the functions z(We) for the given M 

approach the graph of an ideal liquid (M = 0). 

Taking into consideration the character of the functions Z (We), we may assert that in media with small M 

values, starting with certain values of We (~ 3), a large scatter will be observed in the experimental values of Z 

and, consequently, in the rise velocity. This is confirmed by the data of [44 ] for the critical Re number at which 

the rise is still straight, varying for water from 200 to 600. In doubly distilled water the critical value is Z ~ 1.75 

[45 ] (which corresponds to We ~ 2.6). In a pure low viscosity liquid such as water Wek ---- 2.52, whereas at large 

We numbers the bubble begins to "levitate." 

Different reasons are possible for the appearance of instability: purely hydrodynamic reasons associated 

with the motion of gas in a bubble, the presence of surfactants and admixtures, and the degree of perturbation in 

the system. As a rule; the latter items are specified and checked in the literature and experiments: the selection of 

a medium for experiments, the means of producing bubbles, the selection of the area for observation, and the 

method of data acquisition - all this can substantially influence the quality of the experimental data obtained. 

Therefore, to exclude in practice the effect of surfactans in water, the latter should be distilled three times and the 

corresponding chemical treatment of the apparatus should be made. As regards the second item, it is generally 

accepted that the effect of gas motion in the bubble on the hydrodynamics of its rise can be neglected [3 ]. However, 

a precise answer can be found only through the corresponding theoretical investigation. 

2.4. Flow separation on a bubble 

A numerical solution of the problem offers an excellent possibility to elucidate the quantitative and 

qualitative characteristics of the most important phenomenon of hydromechanics, i.e., separation of flow from a 

surface immersed in it. It is presumed that separation from a solid surface occurs due to the clinging of a viscous 

fluid and the formation of vorticity on it [24 ]. In the case of a bubble, the condition of the absence of shear stresses 

and friction is assigned on the boundary. Thus, we eliminate one of the most important reasons which causes flow 

separation, and the last reason remains, i.e., the presence of a boundary layer in which the liquid velocity changes 

from unity on the outer side to a certain value on the bubble boundary. This means that the main role in the 

mechanism of flow separation is played by the adverse pressure gradient on the rear which leads to the retardation 

of the flow. 

At small Reynolds numbers (Re < 5) the generalized pressure function on the surface of a spherical bubble 

decreases monotonically in motion from the forward to the backward stagnation point [46 ]. In this case the flow 

is separationless. As the surface undergoes deformation, the pressure on the back side rises, a segment with an 

adverse gradient appears, and at a certain value of We0 (Fig. 5) a vortex is formed. At large Re numbers a region 

with an adverse pressure gradient already appeares on the sphere, and the flow can separate as directly at the rear 

of the bubble as on the edges of its flattened back side [471. In the region of the vortex wake the pressure on the 

boundary is virtually constant, whereas the liquid velocity is very small (Fig. 7). 

The appearance of the vortex wake downstream of the bubble obliterates the individual features associated 

with the bubble shape and leads to the "self-similarity" of the rise velocity with respect to one of the hydrodynamic 

parameters. In liquids with high M values we have a bubble and an attached vortex, both close to a sphere. The 

experimental data of work [30 ] agree well with the calculations in [26 ]. The geometric characteristics of the bubble 

and wake, and the flow separation angle, depend on the same parameter, i.e., the Reynolds number. Only when 

Re > 110 does the wake behind the bubble open and become unstable. 

In media with small M values we have a flattened ellipsoidal bubble with a long wake (Re > 60). The 

pressure on the bubble surface in the region of the wake is practically constant. At the front of the bubble, since 

the boundary layer on it is - R e  -1, the pressure can be found from the Bernoulli integral [48 ], since the bubble 

resistance is independent of viscosity. Irrespective of the liquid, large bubbles on the surface have the shape of a 
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spherical cup with a vortex at the rear. In this case the quantity 2Fr tends to unity with increase in bubble volume 

[49 ]. 

For very small M values, stationary solutions were obtained for We < 4 (large Re numbers).  At higher We 

values, in the iterations of the calculations of the boundary the bubble alternately flattens and expands again. Its 

shape is close to a flattened ellipsoid with Z = 1.8. The value of the stream function on the bubble rear  is equal to 

a b o u t - 1 0  -4 . Taking into account solutions at smaller Re values, this signifies "impending" separation. However, 

here the s teady regime was not attained despite large expenditures of computation time. Experiments in solutions 

of glycerin [47 ] and the data of [44 ] for media with 1.6- 10 -1~ _< M _< 5.85.10 -7 indicate that a wake is present 

and that the rise occurs along a spiral. Thus,  we may conclude that in low-viscosity liquids (with small values of 

M) the formation of a vortex leads to instability in the linear rise of the bubble. 

Finally, since we consider the "stationary" rise of a bubble, we must analyze Fig. 5 in which We0 is plotted 

as a function of Re. Everywhere below the curve there is a rising bubble without a vortex and above the curve there 

is a wake. The character  of the curve We0(Re) is such that at relatively small Re values (3 _< Re < 20, or in rather  

viscous media with M > 0.001) for We >__ ~ 8 there is a vortex wake supplementing the bubble almost up to a sphere. 

At rather  large Re values (> 100 or in media with M < ~ l0 -6) when We _> 3.5-4 a long wake appears behind a 

flattened ellipsoidal bubble which in liquids with M < ~- 10 -7 leads to the loss of the stability of the linear rise. 

In media with 10 -6 < M < 10 -3, corresponding in Fig. 5 to the transitional region, the value of Weo depends 

substantially on the liquid and on the structure of flow. 

When Re < 3 (in liquids with M > 10) no vortex wake was revealed. The deformation of the surface (even 

a very small one) led, starting from a certain We value (corresponding approximately to R 0 = 3), to instability in 

the calculations of the flow field (Re = l,  We ~ 2; Re = 0.1; We = 0.1). 

2.5. Data correlation, a chart of flow regimes 

When numerical data were discussed and compared with the results of experiments, difficulties arose due 

to the use of different sets of parameters to describe rising bubbles. Traditionally, experimental data are expressed 

as a dependence of the rise velocity of a bubble u on its size a. In this regard, Fig. 8 from work [50 ] is exemplary. 

Large bubbles in different liquids rise with the same velocity, with the law of the rise being formulated with good 

accuracy as Fr  = u2/ga -" 1 (see also [49 ]). The  bubble has the shape of a spherical cup with a large vortex zone 

behind it (supplementing it almost up to a sphere). With smaller sizes of the bubble the curves for different liquids 

intersect and it is difficult to perform any comparative analysis. Harper  [34 ] distinguishes between two types of 

behavior of these curves: monotonically growing with an increase in the bubble volume, and those having a local 

maximum. He suggested using M as the parameter  responsible for such a division. In [30 ] it is indicated that a 

liquid with M = 0.004 can be regarded as a separating one. 
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Fig. 8. Bubble rise velocity (cm/sec) in various media as a function of the 

equivalent radius [50]: 1) water, M = 1.8.10-1~ 2) mineral oil, M -- 1.45.10-2; 

3) varsol,  M = 4.30.10-1~ 4) turpentine,  M = 2.41 x 10-9; 5) methyl  

alcohol, M = 0.89.10-1~ 6) a 62Yo solution of syrup in water, M = 1.55.10-4; 
7) a 68% solution of syrup in water, M = 2.12.10-3; 8) a 56Yo solution of 

glycerin in water, M = 1.76.10-7; 9) a 42% solution of glycerin in water, M 

= 4.18.10-8; 10) a 13Yo solution of glycerin in water, M = 1.17.10 -8. u, 

cm/sec;  a, cm. 

The  segregation of media by the parameter  M turns out to be natural if the dimensionless groups Ra = 

a~ (a/pg)1/2 and Rv = a~ (v2/g)1/3 are used as coordinates for constructing a chart of modes. Since M = (Ra/Rv) 6, 
the data for each medium are expressed on a certain straight line whose slope is dictated by M. In this case all of 

the media are ordered in conformity with the quantity M, and a comparative analysis of the specific features in the 

rise of bubbles in a given medium becomes simple. 

In Fig. 9 the line inclined at an angle of 45 ~ to the Ra axis corresponds to the medium with M = 0.004. 

First of all, we note the good coincidence between the experimental and calculated data for the Froude number. 

Since Ra and Rv are independent  of the rise velocity u, the value of Fr  here provides complete information on u, 

and using the isolines Fr  = const one can easily assess the dependence of u on the bubble size a for specific media. 

There  are two types of isolines which can be separated by a straight line representing a medium contacting a certain 

line Fr = const for the first time. For all of the media below this line, the graph of the rise velocity rises monotonically 

with growth in the volume, since their straight lines intersect the isolines with increasing constants on them. For 

media above this line the graph of the rise velocity has a local maximum. Here, as a separating medium we can 

take with a good accuracy a liquid with M = 0.004 (perhaps, with a slightly smaller value M = 0.001, which is 

insignificant as a whole, as it is preferable to isolate a certain class of media for which the graph of the rise velocity 

has an inflection). 

In Fig. 9 the  d a s h - d o t t e d  lines r ep re sen t  zones I-V with charac te r i s t ic  types  of flows ind ica ted  

schematically. In the region of spherical bubbles (I) the isolines Fr  = const are linear and parallel to the axis Ra: 

the flow is determined by one dimensionless parameter which is usually taken to be the Reynolds number  (the 

capillary forces are large, the surface is a sphere, and everything is dictated by viscous flow). 

For media with large M values there is also a region of Ra numbers where the isolines have the same 

character (region IV). In this case the bubble and the wake form almost a sphere. Calculations agree well with the 

data of [30]. 
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Fig. 9. Chart of the flow modes of a rising bubble and the isolines of the 

Froude numbers [47 ]" solid lines, calculations by P. K. Volkov; dashed lines, 

experiments of various authors; a) data of [44]; b) [47]; points 1-10 

correspond to designations 1-10 in Fig. 8. 

In media with small M values, the isolines approach straight lines parallel to Rv (region V). The flow is 

governed by one parameter independent of viscosity. Here, downstream of the flattened bubble there is a stagnant 

zone with a practically constant pressure on the boundary, so that the bubble resistance is determined by the degree 

of flattening (parameter dependent on a) and by the presence of separation and depends little on v. This is 

confirmed by the data of [51, 52 ] where formulas were obtained for the rise velocity which do not involve v and 

which describe the region behind the local maximum. 

The upper dash-dotted line indicates the apparance of a vortex wake behind a bubble. This line passes 

near the points of contact with the straight lines representing a medium (for small M values) with the isolines Fr 

= const. Thus, the presence of a local maximum in the dependence of the rise velocity on the bubble size can be 

explained by the appearance of a vortex behind the bubble and by the transition from laminar to separating flow. 

Points 2, 6, and 7 in Fig. 9 indicate the positions of local maxima in the bubble rise velocity or inflection points 

from [50 ], confirming the calculated data. Points 1, 3-5, 8-10 correspond to local maxima in the velocity graph for 

media with small M values. 

In the upper portion of region II stationary solutions are obtained only up to the straight line. Thus, 

calculations at Re = 200 could not proceed further than We = 3.8 (.4 in Fig. 9). (The quantity B in Fig. 9 indicates 

the last stationary solution at Re = 200 obtained from the model of a drop when the inner and outer medium density 

ratio is equal to 0.1. In this case we can speak of the rise of a vapor bubble. It was also not possible to proceed 

further. Vibrations appeared in the flow, and stationary solutions were not obtained). Thus, the calculational data 

indicate that, when We > 3.8, instability appears in the flow before the origination of a Vortex wake. This is 

confirmed by experiments: a and b in Fig. 9 present the experimental data of [44, 47 ] pointing to the helical rise 

of bubbles in various liquids. Thus, the instability of flow is caused by the appearance of a vortex at the rear. In 

low-viscosity media (with small M values) this leads to the rise along a helical line, and then to the retardation of 

the bubble and to the appearance of local maximum in the rise velocity graph. In media with higher M values the 

rise is linear with a long wake. 
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Analysis of experimental data (see [3 ] and the literature cited there) in terms of the variable Ra = a/cSa, 

where 5a is the capillary constant of liquid, shows that as a rule the bubble ceases to levitate at Ra -= 1. For bubbles 

exceeding in size the capillary constant (Ra > l, the rise is again linear. Comparison with the data of [50 ] shows 

that the values of a at which Ra -- 1 approximately correspond to the local minimum in the dependence of the rise 

velocity on a for media with small M values. Thus, the local maximum and minimum in the rise velocity graph 

point rather accurately to the region of unsteady nonlinear rise. 

Taking into account the data obtained from the models of an ideal and a viscous liquids, it is possible to 

calculate the rise of the bubbles in media with small M values by solving Euler equations for We < 3.3. In this case 

the liquid flow is separationless. At higher We numbers there is separation in liquids with different M values, and 

a description of the process by the ideal liquid model should take this into account. For this purpose one can use 

the model of [53 ], i.e., the flow is potemial everywhere outside a certain region behind the bubble where the 

pressure is assumed to be constant. (The data of calculations by Navier-Stokes equations indicate that this method 

works well in the wake region). The line separating these regions can be found in the same way as the shape of 

the bubble [10] or as the line of separation from a solid surface in the model of [53, 54]. Such a statement makes 

it possible to obtain the resistance coefficient within the framework of the ideal liquid model. 

Chapter 3. ALLOWANCE FOR THE MOTION OF THE BUBBLE 
MEDIUM. RISE OF DROPS 

3.1. Statement of the problem 

As a rule, when one models bubbles rising in liquid, it is assumed for the simplification of the problem that 

the medium within the bubble is at rest, and to describe the state of such a medium it is quite sufficient to have 

one constant, viz. the thermodynamic gas pressure in a bubble pg. In the case of the rise of gas or air bubbles in 

a heavy liquid this is quite justifiable, since the ratio of the densities and viscosities of the gas and liquid is 

< < 1, and, consequently, the medium in the bubble is light, so that the friction of the gas against the liquid on 

the bubble boundary is small and does not exert a substantial effect on the bubble rise. This assumption is 

confirmed by numerous experiments. However, for vapor bubbles, for example in freons, the density ratio is already 

of the order of 0.1, and calculations using the model of a bubble are no longer satisfactory. 

For the problems of quasisteady rise the simplest way for taking into account the motion of the medium in 

a bubble is to assume that there is a viscous incompressible liquid within the bubble (a drop of another liquid) with 

the density Pl and kinematic viscosity v 1 (P2 and v 2 are the parameters of the external medium). Then, when 

Pl = P2, the drop is in equilibrium; whenpl  < P2, it rises, but whenpl  >/92, it sinks. In any case, one can expect 

the appearance of steady motion, because the Archimedes force of the drop and the resistance force to the liquid 

around it act in opposite directions. Since the volume of the drop"remains invariant because of the liquid 

incompressibility (and, consequently, the Archimedes force is constant), there may come an instant when the 

resistance force becomes the same as the buoyancy force. If in this case the shape of the drop and flow pattern do 

not change substantially, we may say that there occurs a steady rise (immersion), with the velocity u governed by 

the hydrodynamics of the process. 

The equations of motion describing the axisymmetric steady viscous incompressible liquid flow around a 

bubble are supplemented with the Navier-Stokes equations for the interior of the bubble. The boundary conditions 

in terms of the stream function ~0 - vortex ~o in a spherical coordinate system are: on the droplet surface F (r = 

R(O), 0 E [0, Jr]): no-flow condition 

~Pi (r ,  0) = 0 (i = 1, 2) ,  (3.1) 

no-slip condition (the equality of velocities tangent t o / 3  

R' R' (3.1) 
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equality of shear  stresses 

/ R2 ) 
/91 Vl o)l -t- + 2R'2 -- RR" ~01_.Lr = 

R 2 + R '2 R 2 sin 0 

= P2 v2 o)2 + + 2R'2 - RR" g ~ 2 r  (3.3) 
R 2 + R '2 R 2 sin 0 ' 

equality between the difference of normal stresses and capillary pressure 

- Pl  + 2Pl Vl ~lOr - ~ 1 0 / R  - R'  ~lrr -t- - -go) l  = 

R 2 sin 0 

= - P 2  + 2,~ ~020r-~O20/R-R'~2rr  +__RO)2 - ~ K + p g - p ~ .  
R 2 sin 0 

Here cr is the surface tension coefficient on the interface between two media;/91 and P2 is the pressure on F from 

the ins ide  and the outs ide  of the drop, respectively; Pl = ql - Pig R cos 0 + pg, P2 = q2 - P2g R cos 0 + poo; 

ql, q2 are the generalized pressures; pg = Pl (r = O, 0), poo is the pressure on the outer edge of the flow region at 

the "level of the drop" (0 --Jr/2).  

On the outer edge of the flow region the liquid has the velocity u 

tt 2 2 
~02(r, 0 ) - - ~ r  sin 0 ,  (3.5) 

o)2 ( r ,  0) ~ 0 .  (3.6) 

On the symmetry  axis (0 = 0, Jr) 

g ' i ( r ,  0) = o ) i ( r ,  0) = 0 ( i =  1,  2) .  (3.7) 

Thus,  we must find the functions ~1 and co I determined within the drop, ~/'z and o)2 determined outside 

it, and the function of the surface R(O). The correctness of the problem of a liquid drop immersed in a steady 

viscous flow of another  liquid for the case of an infinite region was investigated in [55 ]. It has been proved that 

for certain values of the input parameters the solution exists and that it is a unique one. 

3.2. Dimensional analysis 

Since the drop differs from the bubble by the fact that the medium motion within the bubble satisfies the 

Navier-Stokes equations, the initial problem involves seven independent input dimensional parameters 

t91 ' Vl ' P2 '  1)2' tT, g ,  pg -- p~ . (3.8) 

From the dimensionality theory [27 ] it follows that the solution depends on four independent  dimensionless groups. 

In the adopted nondimensionalization technique (Sec. 2.2) these are: p = t91/,o2, density ratio; Re1 -- vL/Vl, 

Reynolds number  of a drop; Re2 = vL/v2, Reynolds number of external flow; We Fr, Pd. 

According to the dimensional analysis, only four quantities can be independent:  Here,  we take these to be 

p l /p2,  Rel,  Re2, and We. The remaining quantities are determined ones and should be calculated simultaneously 

with the stream functions from the assumption of stationarity of the flow and constancy of the volume (the input 

quantities also incorporate u and 2a). From this it follows, in particular, that with this nondimensionalization 
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technique one cannot obtain a solution for prescribed media. Thus, acquisition of information concerning the 

processes of rise in specific media requires of parametric calculations and interpretation of the results. 

Just as in the case of a bubble, the representation and correlation of results can be conveniently made in 

the coordinates R a and Rv calculated in terms of the rise medium parameters (Sec. 2.2). In this case the data for 

each liquid are located on a certain straight line whose slope depends on M, so that direct comparison of diagrams 

for the drop and bubble is possible. The change in Rel at a fixed Re2 leads to deviations in the values of Fr, from 

which we can judge the degree of influence of the liquid of the drop on the rise velocity. The increased number of 

independent dimensionless parameters does not allow one to efficiently analyze the laws governing the rise on one 

diagram as in the case of a bubble. In this case it is convenient to use the coordinates Ra, and Rv to express the 

lines of constant Reynolds numbers, having denoted on them the values of Fr and the characteristic types of flows. 

This will allow one, by empIoying a direct superposition of diagrams for a bubble and a drop, to elucidate the 

degree of influence of the drop medium on its rise. 

The use of the quantities that depend on the physical properties of the rise medium, i.e., 

2 
L = p2 v2 /a  , v = a/P2 v2 , 

as the characteristic dimension L and velocity v permits one to obtain, instead of Rel, Re2, We, Fr, and Pd, the 

parameters v2/v  1 , 1, 1, M~ I, 2vr-M-~2/Ra, where Ra = a/Sa, 6a = "fa-f-P2g is the capillary constant of the external liquid; 

M2 = gv~oa/a 3 is the parameter M of the external liquid. The quantity to be determined is u. = u / v  = u/(a/P2V2). 

Thus, the motion equations and boundary conditions incorporate dimensionless groups p l /P2,  , v2/Vl, M2, 

Ra, and u.. The first four that depend only on the physical properties of the surrounding medium and drop medium 

and also on the drop size a are independent, whereas the fifth group, the dimensionless rise velocity, is a determined 

quantity. An algorithm has been constructed making it possible to obtain the flow functions and the quantity u. for 

the given media and size of the drop [56 ]. 

3.3. Spherical drop 

The first calculations of complete Navier-Stokes equations were made by Rivkind with co-authors (see [4 ]). 

The constructed algorithms solved the problem of flow around a drop at a given Froude number. This corresponds 

to the determination of flow structure at a given free stream velocity u, and, consequently, the solution complies 

with the problem of drop rise only when u is assumed to be the rise velocity. The flow patterns obtained agree 

qualitatively with the calculations simulating a steady rise of a drop [57 ]. 

The presence of four independent parameters prevents one from carrying out a full investigation of the 

problem of drop rise; therefore, here we shall limit ourselves to the solutions at p = 0.1 for two reasons. First, at 

large Re1 values there should be a good fit with a bubble. Second, they are also important in their own right since 

they model the rise of vapor bubbles (for example, in freons, cryogenic liquids at large specific pressures). 

The effect of the motion of the drop medium can be simply traced for a spherical drop: We = 0, and condition 

(3.4) is fulfilled by selecting the difference of pressures pg - poo (at a given a the boundary should be in 

equilibrium). Having fixed Re 2, it only remains to solve hydrodynamic problems for different Rel values in a given 

region. The resistance coefficient Cd for a steadily rising drop is calculated from the formula Cd = (1 - p l /P2)8 /3Fr  

(Fr = u2/ga). From Table 1 it follows that at Re 1 -- 60 the "bubble approximation" works out rather well, and at 

Re1 = 0.4, the "approximation of a solid sphere." At small Re2 values, solutions which are independent of Re1 are 

obtained. 

The values of Cd at Re 1 = 0.4 are smaller than for a solid sphere [24, 58] by less than 9~o for 

Re2 < 100. (In experiments, Cd for solid bodies is obtained by the method of immersion of the spheres in liquid 

under gravity. However, much as we like the idea, we are unable to numerically establish the limiting transition to 

a solid sphere accurately, since the boundary conditions at the interface of the media differ from the no-slip 

conditions on the wall. In its form condition (3.3) strongly resembles the familiar dependence for a vortex on a 

solid wall, i.e., the so-called Thoma condition [59 ]. It is precisely this fact that seems to be responsible for the 
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TABLE 1. Resistance Coefficient of a Drop Cd = ( 1 - p t / p 2 ) . 8 / 3 F r  (Sphere) 

Re2 

0.1 

1 

12 

40 

60 

100 

200 

0.4 

238 

25.2 

3.58 

1.78 

1.5 

1.28 

1.13 

20 

0.67 

0.65 

Re1 

40 

2.5 

1 

60 100 

236 - 

24.12 - 

- 2.47 

0.93 - 

0.71 - 

0.52 - 

Bubble 

calculation 

160.5 

16.8 

2.2 

0.8 

0.66 

0.48 

0.32 

data of 

[60 ] 

161.6 

17.6 

2.2 

0.83 

0.6 

0.4 

0.2 

Solid sphere [58 ] 

240 

26 

3.9 

1.9 

1.6 

1.2 

0.82 

-0.1 
-s163 

Fig. 10. Pattern of flow near  a rising drop: solid curves, isolines of the stream 

function; dashed lines, velocity vector field; a) P l / P 2  = 0.1, Rel -- 0.4, Re2 -- 

200, We = 0.45, M = 2.9.10 -11, Mdr = 0.004, Fr = 2.1; b) p l / P 2  -- 0.1, Re1 = 

60, Re2 = 100, We = 0.88, M- -3 .4 -10  -9, Mar = 10 -12, F r - -4 .1 ,  Ra- -0 .33 ,  Rv 

-- 8.46. 

good coincidence of results in the parametric domain up to the appearance of secondary flows behind the drop.) 

The external  flow is nonseparaling, but at Re2 = 100, 200 we already have, behind the sphere, a region of secondary 

flow which does not close directly on the drop (Fig. 10a). Within the drop and in the wake region there are vortical 

motions in one direction whose intensity is small. The source of these rotations is the external flow. The internal 

vortex originates at the expense of friction on the interface between the media, and the external vortex appears 

due to the retardation of a portion of liquid behind the drop. The  absence in the flow pattern of the separating line 

originating on the sphere surface is associated with the necessity of joining two vortical motions (inside and outside 

of the drop) in one direction. For the boundary line of the secondary flow to originate at the drop surface, a third 

"buffer" vortex between these two should appear, which rotates in the opposite direction. Such a flow structure is 

possible at ra ther  intense vortical motion behind the drop (or in the case of a low-viscosity and "light" medium in 

the drop), which can induce flow on a portion of the boundary and thus organize a new reverse flow within the 

drop. Such processes actually occur with an increase in We. At We -- 0.46 (Re1 = 0.4, Re2 = 200, a slightly deformed 

sphere) in the iterations of calculations by fictitious time, as soon as a new "buffer" vortex has been generated 

within a drop, the external  vortex starts to depart and a new vortex is formed which borders directly on the surface; 

it develops up to the size at which the flow again becomes steady (B in Fig. 11 )o r  the process will become unsteady. 
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Fig. 11. Chart of the flow modes of a rising drop and the lines of the constant 

Reynolds numbers Re~ and Rez (A, the appearance of secondary flows 

behind a drop): 

No. of 
1 2 3 4 5 6 

curve 

Rel 0.4 0.4 40 0.4 60 60 

Re2 0.1 1 12 12 40 60 

7 8 

0.4 60 

40 100 

9 10 

0.4 0.4 

60 100 

11 12 

20 0.4 

200 200 

In this case, there occurs a jump in the resistance coefficient: Cd = 0.69 which is 16% smaller than Cd for a solid 

sphere (it was higher by 27%). The pressure on the external surface of the drop changes substantially over the 

entire boundary: the viscous forces acting on the drop change appreciable in magnitude and direction. These 

arguments cannot, of course, be considered as the solution for the development of the process in physical time, 

since they correspond to the development in fictitious time. But since in experiments we observe a rise in the form 

of a series of jerks (see review [4 ] and the literature cited there), they provide indirect information on the possible 
processes accompanying the rise of drops. 

An increase in Rel corresponds to less viscous media of the drop and to a decrease in shear stresses on 

the surface. This leads to a reduction in the region of secondary flow which at Re1 = 4 is no longer present (Re2 

= 200). From Table 1 it is seen that already at Rel = 60 the resistance coefficient for Re2 > 1 differs from Cd for 

a bubble by 8-12% (on the order of the value of pl/pz). From solutions at Re/--  12 it follows that the difference 

in Cd for Re1 = 40 and 100 is very insignificant; therefore, in what follows we do not consider Re1 > 60. in Fig. 

10b the flow is shown near a deformed drop (the case of a bubble). There is an intense vortex within it. Its center 

is located near the boundary of the drop. The maximum liquid velocities inside and outside of the drop are nearly 

equal. As Rel decreases at a fixed Re2 the motion inside of the drop slows down, virtually coming to a halt when 
Rel < 0.1. 

Calculations for Re2 - 1 give approximately the same values of Cd for different Rel numbers. The flows 
depends little on the drop medium. This is not surprising, since the solution of the Euler equations (Hill's spherical 

vortex [61 ]) is also an exact solution of the Stokesian approximation of the stationary Navier-Stokes equations [62, 
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63 ]. Thus, the same functions make both the convective terms of the full Navier-Stokes equations and viscous terms 

vanish [24 ]. Therefore, the solutions of the full Navier-Stokes equations at small Re2 values must not strongly 

depend on Re1. The coincidence of the resistance coefficient with the data for a solid sphere is explained by the 

statement of boundary conditions at "infinity" that correspond to a nonperturbed flow at a finite distance from the 

sphere. A comparison of solutions for different boundary conditions and distances from the bubble [26 ] shows that 

the conditions of nonperturbed flow give values of Cd 20-25% higher than those obtained under the Oseen-type 

condition which takes into account the presence of a wake behind a bubble [60 ]. This gives better agreement with 

experimental data. 

Thus, at Ret -- 0.4, Re2 -- 0.1, We = 0.0004 (Fr = 0.009, Ra = 0.15; Rv = 0.65, M = 1.4.10 -4, Mdr -- 10 -9) 

there is an intense vortical motion in the interior of the drop whose maximum velocity is commensurable with the 

drop rise velocity. The solutions obtained for Re 2 < 1 with Re 1 = 0.4 and 60 correspond to the rise of liquid drops 

whose parameter Mdr is smaller than M for the surrounding medium, since the Mdr to M ratio is the same as for 

Re2 > 1; Re1 > 2 is the case of a "bubble" (at Rel -- 0.4, Re2 > 1 is the case of a "solid sphere," since the value 

of Mdr exceeds M of the external medium). To obtain solutions with Mdr higher than M at small values of Re2 and 

to compare them with the solution for a solid sphere, we must solve the internal problem with Re1 smaller than 

Re2. For a fixed Re2 number the values of Mdr change by more than seven orders of magnitude if Rel = 0.4-60: 

Mdr=2(p~/p2)a(Rel/Re2)4M. Note that for water M ~- 10 -11, for mineral oil M -~ 0.01, and for syrup M = 106 

[50 ]. 

3.4. Rise of strained drops 

As We increases at fixed Reynolds numbers, drops flatten in the direction of rise. The change in the surface 

(in the transverse to longitudinal dimension ratio of a drop) reaches 3 ~  at We = 0.24 for different values of Re 1 

and Re2 >- 1. On the diagram with coordinates Ra and Rv this is region I (Fig. 11). When Re2 -< 1, the flow pattern 

and the degree of boundary warping are identical for 0.4 _< Re1 -< 60, but for large Re2 numbers the differences 

are already evident. Thus, the upper end of the straight line which corresponds to the boundary of region I at Rel 

= 0.4 shifts somewhat more rightward, with the values of We increasing insignificantly in this case. 

The dashed lines in Fig. 11 present calculations of We at fixed Rel and Rea numbers. At small values of 

Re2 the data for Re1 -- 60 and 0.7 virtually coincide. The figures at the points on the lines indicate the values of 

Fr obtained in the solution. The difference of this diagram from the previous one for a bubble on which the isolines 

of Fr were depicted should be emphasized. The presence of still another independent parameter characterizing the 

medium of the drop requires carrying out a great number of calculations for constructing diagrams with the 

prescribed value of Mdr. Of course, Fig. 11 does not permit one to easily plot the dependences of the drop rise 

velocity on its size in various liquids, l~ut it discloses the main effects of the process of rise. Thus, at a fixed Re2 

number, Re2 > 1, and at different Rel numbers the points corresponding to the same values of Ra come closer 

together (curves 3 and 4, 5 and 7, 6 and 9, 8 and 10 converge) with an increase in R a. The values of Fr also equalize 

in this case. This indicates that the rise velocities of drops of the same size become identical in spite of the fact 

that the Mdr values on these curves differ by more than seven orders of magnitude. The shape of drops varies from 

a sphere to a flattened ellipsoid on the right boundary of region ! I denoted by a broken dash-dotted line. The flow 

patterns are very diversified in this case (shown schematically in the diagram). 

Thus, when Re2 -< 1 the curves corresponding to Rel = 0.4 and 60 virtually coincide (just as the Froude 

numbers on them). The shape of the drops differs little from a sphere, and only when R a > i does flattening appear 

on the back side, and the "corner" on the surface becomes evident. At Re 1 = 0,4, Re 2 = 1, We = 1.62 (Fr = 0.09, 

R a = 2.94, Rv = 1.39, M = 91, Mdr = 3.56) there is an intense vortex within the drop, and the maximum velocity is 

comparable with the rise velocity. The resistance coefficient is the same as for a solid sphere, whereas the flow 

within the sphere corresponds more to the case of a gas bubble, as in Fig. 10b (in this case Mdr < M). This seeming 

disagreement can be simply explained if we remember that for Re2 -< 1 the solutions depend little on Re1, while 

the motion in a drop is described by the solution given in [61 ], Since the value of Fr is very small (creeping flow, 

small rise velocity), the Archimedes force component, proportional to - cos 0/Fr, will prevail in the determination 
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Fig. 12. Flow pat tern near  a rising drop: a) p l / p 2  -- 0.1; Re1 = 0.4, Re 2 = 100, 

We = 5.2, M = 2.1.10 -6, Mdr = 8.2; b) p l / P 2  = 0.1, Rel  = 60, Re2 = 100, We 

= 5.56, M = 2.6- 10 -6, Mdr = 2" 120 -3. 

of the form for the function of the pressure Pl and,  consequently, also of the friction on the boundary.  The  pressure 

P2 on the surface from the side of external  flow increases monotonically in motion from the nose to the rear.  Starting 

with a certain value of We (already at We = 1.6204 and Ra = 3.18) substantial  changes occur in the motion of the 

liquid. The  intensi ty of the vortex in the drop increased by almost a factor of 2 and the velocity profile became 

nonmonotonous over the sections in the external flow on the back side; nonuniformity appeared in the vicinity of 

the pressure "corner." The  Fr value fell to 0.08 (in that  case M = 106.6 and Mar = 4.16). For higher values of We 

the boundary  of the drop changed in a wave-like fashion, and no stat ionary solution was obtained. 

With Re2 -< 0.1 and different Re1 and We numbers  the shape is practically spherical. When Ra _> 3, we 

failed to obtain a developed flow pattern.  

When Re2 > 1, the rise velocity depends substantially on the drop medium. In the course of strain (increase 

in We) these differences become smaller,  and they virtually disappear  at We = 3.5 - 4.2 for Re2 = 1 - 40. The 

upper  part  of the broken dash-dot ted  line, which separates regions II and  III  in Fig. 11, corresponds to We = 4 - 

4.5 for Re2 > 40. This  segment  is constructed from the values calculated for the case where a vortex wake appears  

behind a drop (when Re1, Re2 >-- 40) or a wavy boundary  appears  on the back side of the drop at smaller  Re2 

numbers .  

Thus ,  at Rel  = 40, Re2 = 12, We = 6.1 (Fr = 0.45, Ra -- 2.6, Rv = 4.3, M = 0.049, Mdr = 3.9" 10 -7) free 

s t ream flow around a drop is still nonseparating.  Thre  drop is flattened, its front surface is smooth, and the back 

one is wavy. The re  is an intense vortex within it with the "center" near  the edge of the drop. The  velocity profile 

in the middle section is virtually uniform and its value is much smaller than the rise velocity. With a fur ther  increase 

in We, the wave in the lower portion becomes stronger and a stagnant zone appears  in the cavity near  the edge 

[57 ] (just as in the case of a bubble (see Fig. 4), the rise medium and the drop size are almost the same).  However, 

in contrast  to the bubble,  no spacious vortex wake was formed here behind the drop. Thereaf ter ,  in i terations the 

boundary  of the back zone varies in a wave-like fashion. 

Solutions at  Rel  = 0.4 and  Re2 = 12 up to We = 3.4 (Ra = 1.9) have the symmetrical  shape of a flattened 

ellipsoid. But a l ready at We -- 3.48 (Fr = 0.48, Ra = 1.91, Rv = 4.22, M = 0.0086, Mdr = 6.2) the number  of iterations 

increases dramatical ly  in the course of finding s t ream functions, the entire surface of the drop becomes wavy, its 

front side curves inward,  and no s teady flow is obtained. 
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Fig. 13. Graphs of the functions of the pressure on a spherical drop: p l / p 2  = 

0.1, Re1 = 0.4, Re2 = 200, We = 0.04, M = 1.3.10 -13, Mar = 10-7; 1) calculation 

for a solid sphere [67 ]; 2) solution in [66 ]. 

TABLE 2. Correspondence Between Hydrodynamic and Geometric Characteristics 

Rel  Re2 

0.4 0.1 

0.4 1 

40 12 

0.4 12 

60 40 

60 60 

0.4 40 

60 100 

0.4 60 

0.4 100 

20 200 

0.4 200 

20 100 

Ro-- 0.2 

We 

0.08 

0.08 

0.18 

0.24 

0.12 

0.34 

0.15 

0.16 

0.28 

0.18 

0.32 

1.01 

1.01 

1.02 

1.03 

1.01 

1.04 

1.01 

1.01 

1.03 

1.01 

1.03 

Ra = 0.5 

We X 

0.48 1.05 

0.32 1.03 

1.08 1.15 

1.36 1.2 

0.68 1.06 

1.72 1.28 

0.8 1.07 

0.92 1.08 

1.52 1.22 

We 

Ra = 1.0 

Z 

1.5 1.2 

1.28 1.16 

2.95 1.57 

3.45 1.8 

2.5 1.3 

4.2 2.2 

2.7 1.36 

3.2 1.42 

We 

2.9 

2.6 

4.9 

Ra = 1.5 
We 

Z 
0.18 

1.6 

1.5 5.76 

1.5 3.44 

2.17 

5 

3.8 

5.5 

4.6 

5.2 

0.4 

3.5 

Z 

1 

1.1 

2 

2 

2.4 

1.6 

2.9 

2.1 

2.1 

1.03 

1.8 

At larger values of Re2 (< 60) and small Re1 the drops also undergo deformation with rise in We up to We 

= 3.45 in a wedge-like fashion with a "droplet" on the back side. Up to We = 3.85 (Rel = 0.5, Re2 = 45, Fr = 1.1, 

Ra = 1.32, Rv = 7.6, M = 2.6.10 -5, Mar = 2.6) the intensity of motion in the drop is small (the stream function 

maximum is equal to - 0.17), and the external flow is nonseparating. We were unable to proceeed fur ther  along 

We, since the surface of the drop on its rear  side varies in waves in iterations when the shape of the drop is 

calculated. For large Rel number  the shape of the drop is symmetrical up to We = 3.45; with a further  increase in 

We it becomes asymmetrical,  and starting with We -- 4.5 a vortex wake appears behind it. Simultaneously, within 

the drop on its back side a "buffer" vortex appears (the "droplet" virtually forms a stagnant zone), which rotates 

in the opposite direction from that of the former vortex. Thus,  the three vortices form a system hydrodynamical ly 

compatible with the external  flow, with the point of contact between them on the drop surface: Rel  = 69, Re2 -- 45, 

We -- 4.95 (Fr = 1.1, R~ = 1.5, Rv -- 7.85, M -- 5- 10 -5, Mdr = 9.7" 10 -9 , and the stream function maximum in the 
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interior of the drop is equal to N 0.6). As We increases, the zones of vortex flow in the external medium and within 

the drop on its back side grow. 

At Re2 = 60 the distance between curves 6 and 9 corresponding to Re1 = 60 and 0.4 (see Fig. 11) increases. 

This means that  the liquid viscosity of the drop exerts a substantial effect on the rise (the density ratio remained 

invariant). At a certain value of We, a zone of secondary flow is formed behind the drop (Re1 = 0.4) at a certain 

distance from it. The  intensity of the vortex motion both inside and outside of the drop is small. As We rises, the 

drop flattens, the zone of secondary flow behind it grows, and a depression appears on its upstream side in 

transition to region III. The  flow with We = 4.62 (Fr = 1.19, Ra = 1.4, Rv = 9.1, M -- 1.3-10 -5, Mdr = 6.58) has the 

same structure as that in Fig. 12a. At Re1 = 60 the symmetry of the shape is preserved up to the formation of a 

vortex on the downstream side (We = 4.55) and further  with an increase in We. For We = 4.97 (Fr = 1.22, R a = 

1.43, R,~ = 9.02, M = 1.58- 10 -5, Mdr = 1.55" 10 -8) the flow pattern is the same as in Fig. 12b. 

Calculations for Re2 = 100 already near  spherical drops give different patterns of flow of the external  liquid 

(lines 8, and 10 in Fig. 11). At Re1 = 0.4 there is a secondary flow behind the drop not contacting the latter. As 

We grows, the drop flattens, its front part being flatter, and the region of the secondary flow behind it increases. 

At We = 4.5 a depression appears in the front part of it. In Fig. 12a (We = 5.2, Fr = 1.37, Ra = 1.38, Rv = 12.19) 

we have a picture with a developed vortex flow behind the drop whose intensity already exceeds that of the internal 

v o r t e x .  

At Re1 = 60 the flow is nonseparating, and the shape of the drop is symmetrical up to We ~ 4.3. A closed 

vortex wake appears at We = 4.34 (simultaneously one other vortex appears within it on the back side). As We 

grows, the vortex behind the drop increases in size (Fig. 12b, We -- 5.56, Fr = 1.35, Rg = 1.43, Rv = 12.25). The 

effect of the composition of the drop medium on the process of the rise of the drop and its shape is illustrated in 

Fig. 12. The M values of the liquid of the drop differ by more than seven orders of magnitude, whereas the Ra and 

R~ values are nearly equal, i.e., the external medium is practically the same, just as the dimensions of the drop. 

The rise velocities of drops are the same, but the flow structures differ substantially. 

Finally, let us make comparisons of the function of the pressure p. The recovery of pressure for Navier- 

Stokes equations even in the regions with known boundaries is not a simple problem, since the equations themselves 

incorporate only the first derivatives of p. Thus,  there is a certain arbitrariness in the specification of the additive 

function of time, which is often selected by fixing p at a certain point in the flow region. In the case of a free surface 

problem the function of the pressure p is contained in the boundary condition for normal stresses and, thus, the 

addition to pressure influences the size of the flow region. The means of selecting a constant in the pressure function 

were discussed in [6, 25, 26, 43 ] for stationary problems and in [64, 65] for the problem of flow behind a drop. 

Therefore,  when comparing the results of calculations with the solutions of the problem of flow even around a solid 

sphere, it should be borne in mind that there may be a discrepancy in the function of p accurate to the shift in the~ 

graph. The  calculation of the problem of rise, i.e., the selection of the Froude number,  which is a factor in the term 

responsible for the presence of gravity, leads to additional deviations. In this regard the function of the generalized 

pressure q, which is generally recovered in calculations in the regions with known boundaries,  is the best choice 

for carrying out comparisons. In Fig. 13 pressure curves are given corresponding to the case of a "solid sphere" (R~ 

= 0.12, Rv = 16.8, Fr  = 2.11). The  symbols p and Pdr designate the pressure graphs on the drop boundary  outside 

and inside of F; q is the generalized pressure of the external liquid on F. There  is qualitative coincidence with 

calculations of works [66, 67 ] for flow around a solid sphere. 

Pressure graphs for Re2 = 100 (Re1 = 0.4, We = 0.08, Fr = 1.88, R~ = 0.14, R~ = 11) have the same 

character; the amplitude decreases almost two times. 

In the case of a "spherical bubble" (Re1 = 60) the pressure functions agree well with the calculations given 

in [60]. The  greatest  differences (-- 20%) are observed at the front point. The  function Pdr is small, practically 

constant, and changes sign from minus to plus in the vicinity of 0 = ~ /2 .  The deformation of a drop, the appearance 

of a vortex wake behind it, leads to the appearance of the "peak" in the pressure at the "edge" of the drop. On the 

plane surfaces of the drop the pressure is virtually constant. 

The  correspondence between the hydrodynamic values of the parameters and the geometric characteristic 

of the drop Z is demonstrated in Table 2. 
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3.5. Generalization of results 

Calculations of the flow around spherical drops with different Re1 numbers and prescribed Re2 > 1 reveal 

two limiting cases for the state of the drop: at Re1 = 0.4 a solid surface can be virtually simulated (here, as a rule, 

Mdr > M; at Rel -- 60 the results are close to the solutions for a rising bubble and can serve as a model for a vapor 

bubble (in this case Mdr < M). The estimate obtained for Re1 remains valid for different values of Re2: the media 

both within the drop and outside it change, but the "bubble" and "solid sphere" approximation is preserved for the 

indicated Re1 values. In this case the M values for the media differ by eight orders of magnitude. To increase this 

difference at a fixed Re2, it is necessary either to lower Re1, which does not give substantially different results 

(the data are close to the results for a solid sphere), or to increase Re1 which also does not give new data since 

there is a bubble in the limit. Thus, if in the media of the drop and external liquid the M values differ by eight 

(and more) orders of magnitude, then we may regard one with respect to the other to be either solid or gaseous 

(it should, of course, be borne in mind that here the fixed value is Pl /,o2 = 0.1). Calculations at Re2 = 60 and 200 

with Rel = 4 indicate that at this value of Re1 the solutions reflect to a greater extent the properties of the bubble 

than of a solid particle. In the interior the maximum velocity is equal to about half the bubble rise velocity, and 

the region of secondary flow behind it is absent, as seen in Fig. 10a. 

As the drop undergoes deformation and transforms into a "pancake" the intensity of motion inside it (as 

compared with the external flow velocity) decreases, concentrating on the edges of the drop. 

The inclined lines between regions I and II, II and III (see Fig. 1 i) were drawn based on the results of 

calculations with Rel = 60. They lie somewhat higher than the corresponding lines in Fig. 9 for a rising bubble. 

The difference between the values of Fr at corresponding points of the diagrams for strained drops (the case of a 

"bubble") and bubbles reaches 50% (they differ several times with a decrease in Rel). With transition to region 

III, when a wave appears, the difference decreases to 20%. In this case the medium and its motion do not virtually 

influence the value of Fr. The shape of the drops and the flow structure are different. This means that the drop 

rise velocity is determined by the density ratio of the media, i.e., by the buoyancy force. From the aforegoing it 

follows, in particular, that separation or a secondary flow makes the main contribution to the resistance of a drop. 

However, different flow patterns near the drop surface exert a substantial effect on the heat and mass transfer 

characteristics. 

Separation on a drop can occur only after the formation of a new vortex in its interior. For this to happen, 

it is necessary that a rather intense vortex motion must exist behind the drop in the stagnation zone capable of 

developing flow on a portion of the surface and establishing conditions for a new "buffer" vortex within it. For liquids 

with Mdr < M (and, as a rule, with Mdr < 4 �9 10 -3) this is observed already with Re2 > 40. For Re2 < 40 and large 

We numbers unsteady oscillations are observed on the back side of the surface. If the medium of the drop and the 

external medium are such that Mar > M (as a rule, Re1 < Re2 for a fixed p l /P2  < 1), then at large Re2 numbers 

the region of secondary flow appears behind the drop and it does not close directly on the drop boundary. 

The curves for different Rel values and a fixed value of Re2 merge at the same We number when a 

depression appears at the front of the drop at small Re1 values and a vortex wake forms at high values of Rel (the 

secondary flow behind the drop at Rel = 0.4 appears earlier). The lines Fr = const for a constant value of Mdr are 

of the same character as for a bubble, and the inclined line between regions II and III in Fig. 11 lies in the vicinity 

of the points of tangency of straight lines representing the surrounding medium with the isolines of Fr. Thus, in 

media with small M the dependence of the rise velocity of the drop of a given liquid on its size has a local maximum 

which precedes the onset of a vortex wake behind the drop. In media with M > 10 -4 unsteady oscillations appear 

on the back side with an increase in the drop size (separation or a secondary flow has not originated as yet). The 

indicated features are observed in  the region with We ~ 4-4.5. Numerous experiments show [68 ] (see also review 

[4 ]) that the oscillations of the drop surface take place precisely at these values of We. 

Just as for a rising bubble, the formation of a vortex wake behind a drop makes the rise velocity independent 

of one of the hydrodynamic parameters: of Rv at small M values (M < 0.004) and of R a at large M values. Thus, 

the appearance of a vortex behind the drop (for small values of Mdr) and a depression in the drop in its front part 
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(for values of Mdr relatively large with respect to M) leads to the self-similarity of its rise velocity both with respect 

to the drop medium and with respect to one other hydrodynamic parameter, i.e., Ra or Rv. In the region of spherical 

drops (I) there is self-similarity with respect to Ra, whereas for Re2 -< 1, also with respect to Mdr. 

At large 1~e2 numbers, the path of the drop rise does not constitute a straight line. This is explained by 

the formation of a vortex wake behind the drop which in low-viscosity liquids (small M) leads to the loss of stability 

in the linear rise. Another reason for the unsteady rise is the motion of the medium in the drop. At large l~ez 

numbers the intense rotation in the region of the secondary flow behind the drop and the rotational motion inside 

it form, on a portion of the boundary, a flow with opposing velocities on the different sides of the surface. Such 

hydrodynamic flows even in the case of a flat surface in the same liquid are unstable [24 ] and lead to the onset of 

waves on it. This, in particular, can be the reason for the wavy motion at the back side of the drop in transition to 

region Ill at small Re2 values when a vortex wake originates. Flows of stable types can exist only on formation of 

a "buffer vortex" which eliminates the source of perturbations. Calculations at Re = 200 provide a qualitative 

explanation for the unsteady processes during the rise of bubbles in distilled water and alcohol [50 ] (they precede 

the region of the local maximum in the rise velocity). In view of this, the hypothesis advanced by Levich [69 ] that 

the motion of a gas in a bubble exerts a substantial effect on its fragmentation merits attention. The collapse of 

the bubble can be caused not by the effects of gas motion proper, which are really not large, but rather the instability 

mechanisms triggered and sustained by them. 

The presence of surfactants or admixtures accumulating on the boundary creates additional friction varying 

along the surface. Allowance for the motion of the medium in the bubble makes it possible to simulate the influence 

of surfactants. In fact, at small values of pl/p2 we have a light low-intertia medium in the bubble. By assigning 

Re1 we may change the value of friction on the interface between the media. As Rel falls, with other parameters 

fixed, the value of Fr decreases; i n t he  diagram of Fig. 11 the corresponding point lies higher (see, e.g., curves 3 

and 4 corresponding to Re1 = 40 and 0.4). As Ra (or We) grows, the curves for different values of Rel get closer, 

the values of Fr on them equalize (Fig. 1 I), and with the appearance of the vortex wake or secondary flow on the 

rear the differences in the rise velocity virtually disappear. All this occurs, as a rule, when Ra > 1. On the other 

hand, it is known that tiny bubbles rise following the Stokes law for a solid sphere. Only with deformation and 

increase in the volume does transition to the Hadamard-Rybczinsky solution occur. This can be explained by the 

hypothesis about the presence of surfactants and admixtures in liquids. The hypothesis is corroborated by applying 

special purification measures, but the reasons for the transition are not revealed. According to the estimates [41 ], 

rising individual bubbles of size larger than the capillary constant (a > 3~ or Ru > 1) do not experience the effect 

of surfactants irrespective of the type of liquid. By comparing calculated and experimental data, we can give the 

following explanation for the transition of the Stokesian mode of flow to the Hadamard-Rybczinsky solution. 

Admixtures and surfactants on the surface of a bubble or a drop create a film which changes the magnitude of 

friction there. The greatest effect is exerted on the back side where the admixtures are swept to. The formation of 

separation on the surface and of a stagnant zone behind a bubble or a drop erases the individual features of friction 

associated with the presence of admixtures. The pattern of flow changes and this makes the main contribution to 

the resistance coefficient. 

Finally, we shall make some comparisons with experiments. Points 1 and 5 in Fig. 9 correspond to the 

points of the local maximum in the graph of the function of the rise velocity on the bubble size for water and for 

a solution of methyl alcohol [50 ] (Fig. 8) in which the effect of surfactant is noticeable. It is precisely in this region 

that the appearance of some unsteady processes is observed, which is associated with the turn of the flow on a 

portion of the boundary and formation of separation from the drop surface (calculations with Re~ = 200 and Re1 

= 0 . 4 ) .  

For other liquids (see 2, 6, 7 in Fig. 9) with higher values of M or small M values and small surface tension 

coefficient (points 3, 4), the points of local maxima or inflection in the rise velocity graphs correspond to the line 

pointing to the presence of a vortex wake behind a bubble. 

In liquids (8, 9 in Figs. 8 and 9) the inflection points in the bubble rise velocity correspond to the formation 

of a vortex behind a drop at large Rel numbers simulating the case of a "bubble" (see Fig. I1). They lie in the 

vicinity of the line between regions II and III which is constructed on the basis of such symptoms as are the 
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Fig. 14. Chart of flow modes and the isolines of the Froude number of a rising 

chain of identical bubbles (L -- 6). 

appearance of a vortex wake or a depression in the front part and the presence of a secondary flow behind a drop. 

According to calculations in the vicinity of this straight line the lines at the level of Fr = const contact the straight 

lines depicting the surrounding medium and, consequently, the rise velocity here has a local maximum or an 

inflection point. Thus, here one observes the effect of motion of the bubble medium on the rise. 

Solutions at p l / P 2  = 0.5 predict similar trends in the deformation of the surface and flow structure. At 

identical Re1, Re2, and We numbers we obtain smaller values of Fr than at p = 0.! [56], whereas the lines of 

constant values of Re1 and Re 2 are located higher than the corresponding lines in Fig. 11. Thus, the entire diagram 

of flow modes at p = 0.5 shifts upwards. As is seen from the coupling between M and Mdr (Sec. 3.3), in this case 

we obtain the solution for the liquid of the drop with higher values of Mdr than at p = 0.1 for the same surrounding 

medium. 

Chapter 4. RISE OF A CHAIN OF BUBBLES 

Investigation of the rise of a chain of identically sized bubbles moving one after the other represents a still 

more complex problem than the rise of a single bubble. An indication of the complication of the problem is the 

presence of one extra independent dimensionless parameter which is the distance between the centers of 

neighboring bubbles. But this is not the sole complication. Simulation of the effect of neighboring bubbles by stating 

periodic conditions connects stream functions and their derivatives on different parts of the flow region boundary. 

In a spherical coordinate region connected with the "center of mass" of the considered bubble, these parts turn out 

to be located on one side of a curvilinear quadrangle depicting the flow region. In this case the familiar method of 

realizing the conditions of periodicity - the cyclic pivot method [70 ] - is unsuitable. An algorithm was developed 

which exactly realizes the conditions in the iterations of calculation [65 ]. 

Experimental investigation becomes very complicated with increased rise velocities. At smaller velocities 

the dimensions of bubbles decrease, and the visualization of flows becomes practically impossible due to optical 

distortions. In this regard only the measurement of rise velocity [71, 72 ] is realizable in practice. To these works 

we may add recent pool boiling investigations [73 ], investigations in pipes with an ascending liquid flow [74 ], and 

those on the rise velocity in capillary tubes [75 ]. It seems that the fullest evidence was obtained by the authors of 

work [74 ] who measured the longitudinal velocity vector components along the tube section behind a bubble and 

friction on the walls. 

The solution of the periodic problem of flow around a chain of equally spaced identical bubbles makes it 

possible to determine more precisely the effect of the deflection of boundary conditions from "infinity" to the final 
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distance from the bubble during the rise of a single bubble. At L = 20 (the distance between the centers of bubbles 

is 2L) the flow patterns are identical up to Re = 20. When Re ___ 40, the vortex wake is much longer: we can 

distinguish in it the separation region adjoining the bubble surface, and in the wake, the secondary flow zone with 

closed streamlines. In this case comparison of the results on the resistance coefficient with the predictions for a 

single bubble [26 ] shows good agreement (Cd is calculated from flow functions near a body; if the separation point 

and the bubble shape are determined rather accurately, there is good correspondence between Cd values). The 

differences become appreciable when the perturbations from the front bubble reach the next bubble. At L = 10, 

starting with Re > 20, the wake of the front bubble closes on the surface of the subsequent bubble and, thus, not 

a chain of separate bubbles rises, but rather a certain entity of bubbles with liquid in between. The rise velocity 

of such formations is somewhat higher than that of a single bubble [65 ], and it is determined by the overall 

Archimedes force of bubbles. But already at L = 6 the Froude numbers at the corresponding points in the diagrams 

are much higher (Fig. 14). Here line 2 point to the fact that the wake from the front bubble closed on the surface 

of the subsequent bubble. Characteristic shapes and structures of flows are shown in Fig. 15. 

At L = 4 (the distance between the bubbles is equal to the diameter) one fails to obtain stationary solutions 

even for spherical bubbles. In the iterations of calculations of the boundary, it oscillates along the path of the rise. 

This agrees with the investigation [76 ] into the stability of the motion of bubbles in an infinite chain. 

CONCLUSION 

An analysis of the problem concerning the interaction of moving single formations (bubbles and drops) 

with the surrounding carrying medium shows the possibility of describing real physical processes within the 

frameworks of the models of ideal and viscous liquids. Generalization of experimental and theoretical data is made 

by constructing charts of flow modes. A successful selection of the dimensionless numbers Ra and Rv as coordinates 

made it possible to arrange in an ordered fashion in the diagram all of the media by means of the parameter M, 

with the data for each specific medium being located on a certain straight line whose slope is determined by M. 

Vast computational data both of the present author and of other investigators for the region of small and 

intermediate values of dimensionless parameters, converted into the Rcr, Rv functions, made it possible to fully 

display the region inaccessible for investigation when the effect of all the parameters is significant and their number 

cannot be reduced. The use of these very parameters for correlating the data of the problem of steady rise of a 

drop made it possible to simply demonstrate the influence both of the presence of the medium itself and its motion 

on the drop rise. Comparison of the data with the problem of bubble rise can be made by simple superposition of 

diagrams. The logical clarity of the parameters Ra, which is equal to the ratio of the equivalent radius a of a bubble 

(drop) to the capillary constant of the surrounding medium 3a, allowed the determination of a certain critical size 

a after which waves appear on the surface at the back side of the bubble (drop) when the value of a is higher than 
2-3c~ a. Another form of instability of steady rise is associated with the formation of a stagnant zone and with the 
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separation of flow from the surface of a bubble or drop characteristic for surrounding media with small values of 

M. The use of the parameters Ra and Rv will definitely significantly simplify the analysis of more complex problems, 
for example, the problems of the motion of bubbles and drops in tubes with liquid and also the change in the 
external conditions (reduced or increased gravitation). 
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